
AFRL-VA-WP-TR-2005-3041

HIGH CONFIDENCE
RECONFIGURABLE DISTRIBUTED
CONTROL

Jason Hickey
John Hauser
Richard Murray
California Institute of Technology
Office of Sponsored Research
1201 E. California Blvd.
Pasadena, CA 91125

APRIL 2005

Final Report for 25 September 1998 – 28 September 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
Public Affairs Office (AFRL/WS) and is releasable to the National Technical Information Service
(NTIS). It will be available to the general public, including foreign nationals.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

/s/ /s/
__ ___
COREY SCHUMACHER DEBORAH S. GRISMER
Program Manager Chief, Control Design and Analysis Branch
Control Design and Analysis Branch Air Force Research Laboratory

/s/
__
BRIAN W. VAN VLIET, Chief
Control Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

April 2005 Final 09/25/1998 – 09/28/2004
5a. CONTRACT NUMBER

F33615-98-C-3613
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

HIGH CONFIDENCE RECONFIGURABLE DISTRIBUTED CONTROL

5c. PROGRAM ELEMENT NUMBER
0602302

5d. PROJECT NUMBER

A04H
5e. TASK NUMBER

6. AUTHOR(S)

Jason Hickey
John Hauser
Richard Murray

5f. WORK UNIT NUMBER

 0D
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

California Institute of Technology
Office of Sponsored Research
1201 E. California Blvd.
Pasadena, CA 91125

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/VACA Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

DARPA
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
 AFRL-VA-WP-TR-2005-3041

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color.

14. ABSTRACT

The Caltech/Colorado SEC project developed and tested two major advances in software enabled control: optimization-
based control using real-time trajectory generation and logical programming environments for formal analysis of
distributed control systems. These two activities, funded under the OCC and HSCC tasks of the SEC, were integrated and
tested on the industry-led demonstration using the F-15 and T-33 flight tests.

15. SUBJECT TERMS
Software Enabled Control, SEC, reconfigurable control, UAV

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 48
 Corey Schumacher
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-8682

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

High Confidence Reconfigurable Distributed Control

Jason Hickey John Hauser Richard Murray (PI)
California Institute of Technology/University of Colorado

FINAL Report, 4 October 2004
F33615-98-C-3613

Abstract

The Caltech/Colorado SEC project developed and tested two major advances in software
enabled control: optimization-based control using real-time trajectory generation and logical
programming environments for formal analysis of distributed control systems. These two activ-
ities, funded under the OCC and HSCC tasks of the SEC, where integrated and tested on the
industry-led demonstration using the F-15 and T-33 flight tests.

1 Project Overview

The theme of this SEC project was the development of distributed control systems that can be
dynamically re-configured and in which DoD can have high confidence. In this project we are
developing the underlying theory, building software tools, and experimentally implementing our
results. The specific objectives of this program were:

• To work towards a general methodology, including theory, languages and automated support,
for developing software enabled control systems. This includes real-time, optimization-based
control theory and ”correct by construction’” programming techniques, as well as tools for
building sys-tems for specific purposes.

• To develop the theory, algorithms, and designs to address specific problems in SEC, includ-
ing multi-vehicle, hierarchical, distributed control for cooperative tasks, and ”on-the-fly’”
techniques for adapting to changes and strategy in dynamic distributed environments.

• To demonstrate the feasibility of our methodology by implementing it using the open control
plat-form (OCP) on an experimental platform consisting of a single vehicle performing aggres-
sive maneuvers with uncertainty and failures, and multiple vehicles performing a coordinated
task in an adversarial environment.

• The work that we envision will focus on the theoretical aspects of the problem, combined
with software tools required to implement our approach. A proof of concept implementation
will be used to demonstrate the key ideas and help sharpen the tools that are developed.

• The program will build on the receding-horizon, model predictive control paradigm that has
been developed under the current SEC program. This approach allows automatic reconfigura-
tion of the control law based on changes in condition of the vehicle, the external environment,
and the mission specification. Theoretical work has shown that by combining receding horizon
control with terminal costs based on control Lyapunov functions, a computational tractable

1

1

RoushRV
Text Box

approach to real-time optimization can be developed. We are in the process of implement-
ing this work on the Caltech ducted fan and will expand the approach to allow trajectory
tracking, multi-vehicle opera-tion, and robustness guarantees.

As part of our activities, we have developed a software environment for design of real-time,
control systems that generates validated, embedded software for use as part of the open control
platform. This environment includes languages for specifying desired performance of the system,
translation tools for converting these performance specifications into control specifications in a semi-
automated fashion, and verification tools that allow the (hybrid) control algorithms to be validated
against the specification in a way that describes the conditions required for successful execution.
This environment has been built on top of the existing software tools that were developed at Caltech
for real-time, optimization-based control, as well as the open control platform. A novel feature of
the software environment is the ability to support dynamic reconfiguration to accommodate changes
in mission, condi-tion, and external environment.

2 OCC: Optimization-Based Control

An advanced control technology that has had tremendous practical impact over the last two decades
or so is model predictive control (MPC). By embedding an optimization solution in each sampling in-
stant within the control calculation, MPC applications have demonstrated dramatic improvements
in control performance. To date, this impact has largely been limited to the process industries.
The reasons for the domain-specific benefit have to do with the relatively slow time constants of
most industrial processes and their relatively benign dynamics (e.g., their open-loop stability). For
aerospace systems to avail of the promise of MPC, research is needed in extending the technology
so that it can be applied to systems with nonlinear, unstable, and fast dynamics.

Under the SEC program, we built a new framework for MPC and optimization-based control
for flight control applications [7, 6, 2, 11, 4, 5, 3]. The MPC formulation replaces the traditional
terminal constraint with a terminal cost based on a control Lyapunov function. This reduces
computational requirements and allows proofs of stability under a variety of realistic assumptions
on computation.

A major element of our approach was to use differential flatness system to gain computational
advantage [12]. (A system is differentially flat if, roughly, it can be modeled as a dynamical
equation in one variable and its derivatives.) In this case the optimization can be done over a
space of parametrized basis functions and a constrained nonlinear program can be solved using
collocation points. A software package, NTG, was been developed to implement these theoretical
developments and this package was transitioned to industry (as part of the Northrop Grumman
SEC flight demonstration).

To test these algorithms, a tethered ducted fan testbed was developed at Caltech that mimics
the longitudinal dynamics of an aircraft [1, 2, 5]. High-performance maneuvers can safely be flown
with the ducted fan and an interface to high-end workstations allows complex control schemes to
be solved in real-time. Optimization-based control using NTG has been implemented in several
experiments, detailing among other things the effects of different MPC optimization horizons on
computing time and dynamic performance.

More information on this topic is included in Appendix B.

2

2

3 HCSS: Computation and Control Language

A cooperative control system consists of multiple, autonomous components interacting to control
their environment. Examples include air traffic control systems, automated factories, robot soccer
teams and sensor/actuator networks. In each of these systems, a component reacts to its environ-
ment and to messages received from neighboring components. Thus, a cooperative control system
is at once a controlled physical system and a distributed computer. Designing cooperative control
systems, therefore, requires a combination of tools from control theory and distributed systems.

Under the SEC program, we developed a languange for describing and reasoning about such
systems, called CCL (Computational and Control Language) [8, 10, 9, 13, 14]. CCL is an attempt
to bridge the ways of modeling and designing software and dynamical sytsems. It is designed for
use in distributed (partially asynchronous) environments, such as those required for multi-vehicle
operations.

CCL is a modeling language similar in appearance to UNITY, but interpreted differently. The
basic unit of a CCL program is the guarded command (or simply command) which we describe by
example. Formal definitions can be found elsewhere [9]. An example of a guarded command is:

t > 10 : x′
≥ x + 1 ∧ t′ = 0 :

The part before the colon is called the guard and the part after it is called the rule. We interpret
it as follows: If this command is executed in a state where the variable t is greater than 10, then
a new state will result in which the new value of x is greater than or equal to its old value plus 1,
and the new value of t is 0. All other variables (those not occuring primed) remain the same. If
the command is executed in a state in which t is not greater than 10, then the new state is defined
to be exactly the same as the old state. The execution of a command is called a step. Note that
guarded commands can be non-deterministic, as is the one above since it does not specify the exact
new value for x, only that it should increase by at least 1.

A complete CCL program P = (I, C) consists of two parts: An initial predicate I that says what
the initial values of the variables involved are allowed to be; and a set C of guarded commands.
CCL program composition is very straightforward. If P1 = (I1, C1) and P2 = (I2, C2), then their
composition is simply P1 ◦ P2 = (I1 ∧ I2, C1 ∪ C2). That is, to obtain the composition of two
programs, conjoin their initial clauses and union their command sets.

More information on this topic is included in Appendix C.

4 Final Demo

The Caltech/Colorado team participated in the industry-led demo by implementing a reliable wing-
man scenario, in which a UAV performed formation flying with a manned aircraft, demonstrating
both performance and safety, and operated in the presence of communications failures by executing
a lost wingman sceneario. During formation flight, the vehicles performed a set of coordinated
actions using receding horizon control with on the UAV to demonstrate real-time trajectory gener-
ation. After demonstrating coordinated formation flight, the UAV simulated loss of the high data
rate link between the aircraft and begin executing a “lost wingman” protocol designed to (provably)
achieve an increased separation between the aircraft. After safe separation was achieved, the high
bandwidth link was restored and the UAV requested a rejoin and executed a safe rejoin maneuver.

The Logical Programming Environment (LPE) framework was used to develop and verify the
protocols for executing this scenario, ensuring that the problem specification was satisfied in pres-

3

3

ence of uncertainty in dynamics, timing and failures. Temporal logic was used to specify the desired
performance and our protocol was implemented using CCL (Computation and Control Language).

More information on this topic is included in Appendix D.

5 Conclusions

The Caltech/Colorado project within the SEC program generated two major advances in control
theory and practice: a framework for optimization-based control using NTG and a logical program-
ming environment built around CCL. Togoether, these two advances have provided new insights,
approaches and tools for real-time, cooperative control that exploits advances in computing and
communications.

4

4

References

[1] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray. Model predictive control of a
thurst-vectored flight control experiment. In Proc. IFAC World Congress, 2002.

[2] R. Franz, M. B. Milam, and J. E. Hauser. Applied receding horizon control of the caltech
ducted fan. In Proc. American Control Conference, 2002. Submitted.

[3] A. Jadbabaie. Nonlinear Receding Horizon Control: A Control Lyapunov Function Approach.
PhD thesis, California Institute of Technology, Control and Dynamical Systems, 2001.

[4] A. Jadbabaie and J. E. Hauser. Relaxing the optimality condition in receding horizon control.
In Proc. IEEE Control and Decision Conference, 2000.

[5] A. Jadbabaie, J. Yu, and J. E. Hauser. Receding horizon control of the caltech ducted fan: A
control Lyapunov function approach. In Proc. IEEE International Conference on Control and

Applications, 1999.

[6] A. Jadbabaie, J. Yu, and J. E. Hauser. The region of attraction of receding horizon control
strategies with control Lyapunov functions. In Proc. IEEE Control and Decision Conference,
1999.

[7] A. Jadbabaie, J. Yu, and J. E. Hauser. Stabilizing receding horizon control of nonlinear
systems: A control Lyapunov function approach. In Proc. American Control Conference,
1999.

[8] E. Klavins. Communication complexity of multi-robot systems. In Fifth International Work-

shop on the Algorithmic Foundations of Robotics, 2002.

[9] E. Klavins. A formal model of a multi-robot control and communication task. In Proc. IEEE

Control and Decision Conference, 2003.

[10] E. Klavins and R. M. Murray. Distributed computation for cooperative control. IEEE Perva-

sive Computing, 2003. In revision.

[11] M. B. Milam, R. Franz, J. E. Hauser, and R. M. Murray. Receding horizon control of a
vectored thrust flight experiment. IEE Proceedings on Control Theory and Applications, 2003.
Submitted.

[12] R. M. Murray et al. Online control customization via optimization-based control. In T. Samad
and G. Balas, editors, Software-Enabled Control: Information Technology for Dynamical Sys-

tems. IEEE Press, 2003.

[13] D. Del Vecchio and E. Klavins. Observation of hybrid guarded command programs. In Proc.

IEEE Control and Decision Conference, 2003. To appear.

[14] D. Del Vecchio, R. M. Murray, and Erik Klavins. Discrete state estimators for systems on a
lattice. Automatica, 2004. Submitted.

5

5

A Individuals Supported by Contract

Faculty

• Mani Chandy (Caltech CS; 1998-2000)

• John Doyle (Caltech CDS; 1998-2000)

• Jason Hickey (Caltech CS; 2001–2004)

• John Hauser (Colorado EE; 2000–2004)

• Richard Murray (PI; Caltech CDS; 1998–2004)

Postdoctoral Scholars

• Eric Klavins (Caltech CS, 2001–2003). Currently an assistant professor of electrical engineer-
ing at the University of Washington.

• Reza Olfati-Saber (Caltech CDS, 2001–2004). Currently an instructor in Mechanical and
Aerospace Engineering at UCLA.

• Nicolas Petit (Caltech CDS, 2000–2002). Currently an assistant professor at Ecoles des Mines
des Paris.

Graduate Students

• Bill Dunbar (Caltech CDS) - Currently an assistant professor of electrical and computer
engineering at UC Santa Cruz.

• Melvin Flores (Caltech CDS)

• Ryan Franz (Colorado EE) - Currently employed by Northrop Grumman Corporation.

• Roman Ginis (Caltech CS)

• Adam Granicz (Caltech CS)

• Nathan Gray (Caltech CS)

• Rick Hindman (Colorado EE) - Currently employed by Raytheon. Corporation

• Ali Jadbabaie (Caltech CDS) - Currently an assistant professor of electrical engineering at
the University of Pennsylvania.

• Mark Milam (Caltech CDS) - Currently employed by Northrop Grumman Corporation.

• Cristian Tapus (Caltech CS)

• Steve Waydo (Caltech CDS)

6

6

Online Control Customization via Optimization-Based Control∗

Richard M. Murray John Hauser

Control and Dynamical Systems Electrical and Computer Engineering
California Institute of Technology University of Colorado

Pasadena, CA 91125 Boulder, CO 80309

Ali Jadbabaie†, Mark B. Milam, Nicolas Petit‡, William B. Dunbar, Ryan Franz§

Control and Dynamical Systems
California Institute of Technology

Submitted, Software-Enabled Control: Information Technology for Dynamical
Systems, T. Samad and G. Balas (eds), IEEE Press, 2002 (in preparation)

Online Control Customization via Optimization-Based Control

Editors’ Summary

An advanced control technology that has had tremendous practical impact over the last two decades
or so is model predictive control (MPC). By embedding an optimization solution in each sampling in-
stant within the control calculation, MPC applications have demonstrated dramatic improvements
in control performance. To date, this impact has largely been limited to the process industries.
The reasons for the domain-specific benefit have to do with the relatively slow time constants of
most industrial processes and their relatively benign dynamics (e.g., their open-loop stability). For
aerospace systems to avail of the promise of MPC, research is needed in extending the technology
so that it can be applied to systems with nonlinear, unstable, and fast dynamics.

This chapter presents a new framework for MPC and optimization-based control for flight
control applications. The MPC formulation replaces the traditional terminal constraint with a
terminal cost based on a control Lyapunov function. This reduces computational requirements and
allows proofs of stability under a variety of realistic assumptions on computation.

The authors also show how differential flatness system can be used to computational advantage.
(A system is differentially flat if, roughly, it can be modeled as a dynamical equation in one variable
and its derivatives.) In this case the optimization can be done over a space of parametrized basis
functions and a constrained nonlinear program can be solved using collocation points. A software
package has been developed to implement these theoretical developments.

There is an experimental component to this research as well. A tethered ducted fan testbed has
been developed at Caltech that mimics the longitudinal dynamics of an aircraft. High-performance
maneuvers can safely be flown with the ducted fan and an interface to high-end workstations

∗Research supported in part by DARPA contract F33615-98-C-3613.
†Currently with the Department of Electrical Engineering, Yale University
‡Currently with Centre Automatique et Systeèmes, École National Supériere des Mines, Paris
§Electrical and Computer Engineering, University of Colorado

1

7

Richard Murray
Appendix B

In Software-Enabled Control: Information Technology for Dynamical Systems, 2003
http://www.cds.caltech.edu/~murray/papers/2001n_mur+01-sec.html

Δ

ud

xd

ref

δu

Plant

P
outputnoise

Feedback

Compensation

Trajectory

Generation

Figure 1: Two degree of freedom controller design for a plant P with uncertainty Δ. See text for
a detailed explanation.

allows complex control schemes to be solved in real-time. The chapter presents results from several
experiments, detailing among other things the effects of different MPC optimization horizons on
computing time and dynamic performance.

Another model predictive control approach is discussed in Chapter 10.

1 Introduction

A large class of industrial and military control problems consist of planning and following a trajec-
tory in the presence of noise and uncertainty. Examples include unmanned airplanes and submarines
for surveillance and combat, mobile robots in factories and on the surface of Mars, and medical
robots performing inspection and manipulation tasks inside the human body under the control of
a surgeon. All of these systems are highly nonlinear and demand accurate performance.

To control such systems, we make use of the notion of two degree of freedom controller design.
This is a standard technique in linear control theory that separates a controller into a feedforward
compensator and a feedback compensator. The feedforward compensator generates the nominal
input required to track a given reference trajectory. The feedback compensator corrects for errors
between the desired and actual trajectories. This is shown schematically in Figure 1.

In a nonlinear setting, two degree of freedom controller design decouples the trajectory gener-
ation and asymptotic tracking problems. Given a desired output trajectory, we first construct a
state space trajectory xd and a nominal input ud that satisfy the equations of motion. The error
system can then be written as a time-varying control system in terms of the error, e = x − xd.
Under the assumption that that tracking error remains small, we can linearize this time-varying
system about e = 0 and stabilize the e = 0 state. A more detailed description of this approach,
including references to some of the related literature, is given in [24].

In optimization-based control, we use the two degree of freedom paradigm with an optimal
control computation for generating the feasible trajectory. In addition, we take the extra step
of updating the generated trajectory based on the current state of the system. This additional
feedback path is denoted by a dashed line in Figure 1 and allows the use of so-called receding
horizon control techniques: a (optimal) feasible trajectory is computed from the current position

2

8

to the desired position over a finite time T horizon, used for a short period of time δ < T , and then
recomputed based on the new position.

Many variations on this approach are possible, blurring the line between the trajectory genera-
tion block and the feedback compensation. For example, if δ � T , one can eliminate all or part of
the “inner loop” feedback compensator, relying on the receding horizon optimization to stabilize
the system. A local feedback compensator may still be employed to correct for errors due to noise
and uncertainty on the fastest time scales. In this chapter, we will explore both the case where we
have a relatively large δ, in which case we consider the problem to be primarily one of trajectory
generation, and a relatively small δ, where optimization is used for stabilizing the system.

A key advantage of optimization-based approaches is that they allow the potential for cus-
tomization of the controller based on changes in mission, condition, and environment. Because the
controller is solving the optimization problem online, updates can be made to the cost function, to
change the desired operation of the system; to the model, to reflect changes in parameter values
or damage to sensors and actuators; and to the constraints, to reflect new regions of the state
space that must be avoided due to external influences. Thus, many of the challenges of designing
controllers that are robust to a large set of possible uncertainties become embedded in the online
optimization.

Development and application of receding horizon control (also called model predictive control,
or MPC) originated in process control industries where plants being controlled are sufficiently
slow to permit its implementation. An overview of the evolution of commercially available MPC
technology is given in [27] and a survey of the current state of stability theory of MPC is given in
[20]. Closely related to the work in this chapter, Singh and Fuller [29] have used MPC to stabilize a
linearized simplified UAV helicopter model around an open-loop trajectory, while respecting state
and input constraints.

In the remainder of this chapter, we give a survey of the tools required to implement online con-
trol customization via optimization-based control. Section 2 introduces some of the mathematical
results and notation required for the remainder of the chapter. Section 3 gives the main theoreti-
cal results of the paper, where the problem of receding horizon control using a control Lyapunov
function (CLF) as a terminal cost is described. In Section 4, we provide a computational frame-
work for computing optimal trajectories in real-time, a necessary step toward implementation of
optimization-based control in many applications. Finally, in Section 5, we present an experimental
implementation of both real-time trajectory generation and model-predictive control on a flight
control experiment.

The results in this chapter are based in part on work presented elsewhere. The work on receding
horizon control using a CLF terminal cost was developed by Jadbabaie, Hauser and co-workers and
is described in [16]. The real-time trajectory generation framework, and the corresponding software,
was developed by Milam and co-workers and has appeared in [21, 23, 25]. The implementation
of model predictive control given in this chapter is based on the work of Dunbar, Milam, and
Franz [8, 10].

2 Mathematical Preliminaries

In this section we provide some mathematical preliminaries and establish the notation used through
the chapter. We consider a nonlinear control system of the form

ẋ = f(x, u) (1)

3

9

θ

(x, y)
f2

x

y
f1

net thrust

Figure 2: Planar ducted fan engine. Thrust is vectored by moving the flaps at the end of the duct.

where the vector field f : R
n × R

m → R
n is at least C2 and possesses a linearly controllable

equilibrium point at the origin, e.g., f(0, 0) = 0 and (A,B) := (D1f(0, 0),D2f(0, 0)) is controllable.

2.1 Differential Flatness and Trajectory Generation

For optimization-based control in applications such as flight control, a critical need is the ability
to compute optimal trajectories very quickly, so that they can be used in a real-time setting. For
general problems this can be very difficult, but there are classes of systems for which simplifications
can be made that vastly reduce the computational requirements for generating trajectories. We
describe one such class of systems here, so-called differentially flat systems.

Roughly speaking, a system is said to be differentially flat if all of the feasible trajectories for
the system can be written as functions of a flat output z(·) and its derivatives. More precisely,
given a nonlinear control system (1) we say the system is differentially flat if there exists a function
z(x, u, u̇, . . . , u(p)) such that all feasible solutions of the differential equation (1) can be written as

x = α(z, ż, . . . , z(q))

u = β(z, ż, . . . , z(q)).
(2)

Differentially flat systems were originally studied by Fliess et al. [9]. See [24] for a description of the
role of flatness in control of mechanical systems and [33] for more information on flatness applied
to flight control systems.

Example 1 (Planar ducted fan). Consider the dynamics of a planar, vectored thrust flight
control system as shown in Figure 2. This system consists of a rigid body with body fixed forces
and is a simplified model for the Caltech ducted fan described in Section 5. Let (x, y, θ) denote the
position and orientation of the center of mass of the fan. We assume that the forces acting on the
fan consist of a force f1 perpendicular to the axis of the fan acting at a distance r from the center
of mass, and a force f2 parallel to the axis of the fan. Let m be the mass of the fan, J the moment
of inertia, and g the gravitational constant. We ignore aerodynamic forces for the purpose of this
example.

4

10

The dynamics for the system are

mẍ = f1 cos θ − f2 sin θ

mÿ = f1 sin θ + f2 cos θ − mg

Jθ̈ = rf1.

(3)

Martin et al. [19] showed that this system is differentially flat and that one set of flat outputs is
given by

z1 = x − (J/mr) sin θ

z2 = y + (J/mr) cos θ.
(4)

Using the system dynamics, it can be shown that

z̈1 cos θ + (z̈2 + g) sin θ = 0. (5)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of π and away from the
singularity z̈1 = z̈2 + g = 0. The remaining states and the forces f1(t) and f2(t) can then be
obtained from the dynamic equations, all in terms of z1, z2, and their higher order derivatives.

Having determined that a system is flat, it follows that all feasible trajectories for the system
are characterized by the evolution of the flat outputs. Using this fact, we can convert the problem
of point to point motion generation to one of finding a curve z(·) which joins an initial state
z(0), ż(0), . . . , ż(q)(0) to a final state. In this way, we reduce the problem of generating a feasible
trajectory for the system to a classical algebraic problem in interpolation. Similarly, problems in
generation of trajectories to track a reference signal can also be converted to problems involving
curves z(·) and algebraic methods can be used to provide real-time solutions [33, 34].

Thus, for differentially flat systems, trajectory generation can be reduced from a dynamic
problem to an algebraic one. Specifically, one can parameterize the flat outputs using basis functions
φi(t),

z =
∑

aiφi(t), (6)

and then write the feasible trajectories as functions of the coefficients a:

xd = α(z, ż, . . . , z(q)) = xd(a)

ud = β(z, ż, . . . , z(q)) = ud(a).
(7)

Note that no ODEs need to be integrated in order to compute the feasible trajectories (unlike
optimal control methods, which involve parameterizing the input and then solving the ODEs).
This is the defining feature of differentially flat systems. The practical implication is that nominal
trajectories and inputs which satisfy the equations of motion for a differentially flat system can be
computed in a computationally efficient way (solution of algebraic equations).

2.2 Control Lyapunov Functions

For the optimal control problems that we introduce in the next section, we will make use of a
terminal cost that is also a control Lyapunov function for the system. Control Lyapunov functions
are an extension of standard Lyapunov functions and were originally introduced by Sontag [30].
They allow constructive design of nonlinear controllers and the Lyapunov function that proves their
stability. A more complete treatment is given in [17].

5

11

Definition 1. Control Lyapunov Function
A locally positive function V : R

n → R+ is called a control Lyapunov function (CLF) for a control
system (1) if

inf
u∈Rm

(
∂V

∂x
f(x, u)

)
< 0 for all x �= 0.

In general, it is difficult to find a CLF for a given system. However, for many classes of
systems, there are specialized methods that can be used. One of the simplest is to use the Jacobian
linearization of the system around the desired equilibrium point and generate a CLF by solving an
LQR problem.

It is a well known result that the problem of minimizing the quadratic performance index,

J =
∫ ∞

0
(xT (t)Qx(t) + uT Ru(t))dt subject to ẋ = Ax + Bu, x(0) = x0, (8)

results in finding the positive definite solution of the following Riccati equation:

AT P + PA − PBR−1BT P + Q = 0 (9)

The optimal control action is given by

u = −R−1BT Px

and V = xT Px is a CLF for the system.
In the case of the nonlinear system ẋ = f(x, u), A and B are taken as

A =
∂f(x, u)

∂x
|(0,0) B =

∂f(x, u)
∂u

|(0,0)

where the pairs (A,B) and (Q
1
2 , A) are assumed to be stabilizable and detectable respectively.

Obviously the obtained CLF V (x) = xT Px will be valid only in a region around the equilibrium
(0, 0).

More complicated methods for finding control Lyapunov functions are often required and many
techniques have been developed. An overview of some of these methods can be found in [15].

3 Optimization-Based Control

In receding horizon control, a finite horizon optimal control problem is solved, generating an open-
loop state and control trajectories. The resulting control trajectory is then applied to the system
for a fraction of the horizon length. This process is then repeated, resulting in a sampled data
feedback law. Although receding horizon control has been successfully used in the process control
industry, its application to fast, stability critical nonlinear systems has been more difficult. This
is mainly due to two issues. The first is that the finite horizon optimizations must be solved in a
relatively short period of time. Second, it can be demonstrated using linear examples that a naive
application of the receding horizon strategy can have disastrous effects, often rendering a system
unstable. Various approaches have been proposed to tackle this second problem; see [20] for a
comprehensive review of this literature. The theoretical framework presented here also addresses
the stability issue directly, but is motivated by the need to relax the computational demands of
existing stabilizing MPC formulations.

6

12

A number of approaches in receding horizon control employ the use of terminal state equality
or inequality constraints, often together with a terminal cost, to ensure closed loop stability. In
Primbs et al. [26], aspects of a stability-guaranteeing, global control Lyapunov function were used,
via state and control constraints, to develop a stabilizing receding horizon scheme. Many of the
nice characteristics of the CLF controller together with better cost performance were realized.
Unfortunately, a global control Lyapunov function is rarely available and often not possible.

Motivated by the difficulties in solving constrained optimal control problems, we have developed
an alternative receding horizon control strategy for the stabilization of nonlinear systems [16]. In
this approach, closed loop stability is ensured through the use of a terminal cost consisting of a
control Lyapunov function that is an incremental upper bound on the optimal cost to go. This
terminal cost eliminates the need for terminal constraints in the optimization and gives a dramatic
speed-up in computation. Also, questions of existence and regularity of optimal solutions (very
important for online optimization) can be dealt with in a rather straightforward manner. In the
remainder of this section, we review the results presented in [16].

3.1 Finite Horizon Optimal Control

We first consider the problem of optimal control over a finite time horizon. Given an initial state
x0 and a control trajectory u(·) for a nonlinear control system ẋ = f(x, u), the state trajectory
xu(·;x0) is the (absolutely continuous) curve in R

n satisfying

xu(t;x0) = x0 +
∫ t

0
f(xu(τ ;x0), u(τ)) dτ

for t ≥ 0.
The performance of the system will be measured by a given incremental cost q : R

n × R
m → R

that is C2 and fully penalizes both state and control according to

q(x, u) ≥ cq(‖x‖2 + ‖u‖2), x ∈ R
n, u ∈ R

m

for some cq > 0 and q(0, 0) = 0. It follows that the quadratic approximation of q at the origin is
positive definite, D2q(0, 0) ≥ cqI > 0.

To ensure that the solutions of the optimization problems of interest are well behaved, we
impose some convexity conditions. We require the set f(x, Rm) ⊂ R

n to be convex for each
x ∈ R

n. Letting p ∈ R
n represent the co-state, we also require that the pre-Hamiltonian function

u
→ pT f(x, u) + q(x, u) =: K(x, u, p) be strictly convex for each (x, p) ∈ R
n ×R

n and that there is
a C2 function ū∗ : R

n × R
n → R

m : (x, p)
→ ū∗(x, p) providing the global minimum of K(x, u, p).
The Hamiltonian H(x, p) := K(x, ū∗(x, p), p) is then C2, ensuring that extremal state, co-state,
and control trajectories will all be sufficiently smooth (C1 or better). Note that these conditions
are trivially satisfied for control affine f and quadratic q.

The cost of applying a control u(·) from an initial state x over the infinite time interval [0,∞)
is given by

J∞(x, u(·)) =
∫ ∞

0
q(xu(τ ;x), u(τ)) dτ .

The optimal cost (from x) is given by

J∗
∞(x) = inf

u(·)
J∞(x, u(·))

7

13

where the control functions u(·) belong to some reasonable class of admissible controls (e.g., piece-
wise continuous or measurable). The function x
→ J∗∞(x) is often called the optimal value function
for the infinite horizon optimal control problem.

For the class of f and q considered, we know that J∗∞(·) is a positive definite C2 function on
a neighborhood of the origin. This follows from the geometry of the corresponding Hamiltonian
system (see [13] and the references therein). In particular, since (x, p) = (0, 0) is a hyperbolic
critical point of the C1 Hamiltonian vector field XH(x, p) := (D2H(x, p),−D1H(x, p))T , the local
properties of J∗∞(·) are determined by the linear-quadratic approximation to the problem and,
moreover, D2J∗∞(0) = P > 0 where P is the stabilizing solution of the appropriate algebraic
Riccati equation.

For practical purposes, we are interested in finite horizon approximations of the infinite horizon
optimization problem. In particular, let V (·) be a nonnegative C2 function with V (0) = 0 and
define the finite horizon cost (from x using u(·)) to be

JT (x, u(·)) =
∫ T

0
q(xu(τ ;x), u(τ)) dτ + V (xu(T ;x)) (10)

and denote the optimal cost (from x) as

J∗
T (x) = inf

u(·)
JT (x, u(·)) .

As in the infinite horizon case, one can show, by geometric means, that J∗
T (·) is locally smooth

(C2). Other properties will depend on the choice of V and T .
Let Γ∞ denote the domain of J∗∞(·) (the subset of R

n on which J∗∞ is finite). It is not too
difficult to show that the cost functions J∗∞(·) and J∗

T (·), T ≥ 0, are continuous functions on
Γ∞ [15]. For simplicity, we will allow J∗∞(·) to take values in the extended real line so that, for
instance, J∗∞(x) = +∞ means that there is no control taking x to the origin.

We will assume that f and q are such that the minimum value of the cost functions J∗∞(x),
J∗

T (x), T ≥ 0, is attained for each (suitable) x. That is, given x and T > 0 (including T = ∞
when x ∈ Γ∞), there is a (C1 in t) optimal trajectory (x∗

T (t;x), u∗
T (t;x)), t ∈ [0, T], such that

JT (x, u∗
T (·;x)) = J∗

T (x). For instance, if f is such that its trajectories can be bounded on finite
intervals as a function of its input size, e.g., there is a continuous function β such that ‖xu(t;x0)‖ ≤
β(‖x0‖, ‖u(·)‖L1 [0,t]), then (together with the conditions above) there will be a minimizing control
(cf. [18]). Many such conditions may be used to good effect; see [15] for a more complete discussion.

It is easy to see that J∗∞(·) is proper on its domain so that the sub-level sets

Γ∞
r := {x ∈ Γ∞ : J∗

∞(x) ≤ r2}

are compact and path connected and moreover Γ∞ =
⋃

r≥0 Γ∞
r . Note also that Γ∞ may be a proper

subset of R
n since there may be states that cannot be driven to the origin. We use r2 (rather than

r) here to reflect the fact that our incremental cost is quadratically bounded from below. We refer
to sub-level sets of J∗

T (·) and V (·) using

ΓT
r := path connected component of {x ∈ Γ∞ : J∗

T (x) ≤ r2} containing 0,

and
Ωr := path connected component of {x ∈ R

n : V (x) ≤ r2} containing 0.

These results provide the technical framework needed for receding horizon control.

8

14

3.2 Receding Horizon Control with CLF Terminal Cost

Receding horizon control provides a practical strategy for the use of model information through on-
line optimization. Every δ seconds, an optimal control problem is solved over a T second horizon,
starting from the current state. The first δ seconds of the optimal control u∗

T (·;x(t)) is then applied
to the system, driving the system from x(t) at current time t to x∗

T (δ, x(t)) at the next sample time
t + δ (assuming no model uncertainty). We denote this receding horizon scheme as RH(T, δ).

In defining (unconstrained) finite horizon approximations to the infinite horizon problem, the
key design parameters are the terminal cost function V (·) and the horizon length T (and, perhaps
also, the increment δ). What choices will result in success?

It is well known (and easily demonstrated with linear examples), that simple truncation of the
integral (i.e., V (x) ≡ 0) may have disastrous effects if T > 0 is too small. Indeed, although the
resulting value function may be nicely behaved, the “optimal” receding horizon closed loop system
can be unstable.

A more sophisticated approach is to make good use of a suitable terminal cost V (·). Evidently,
the best choice for the terminal cost is V (x) = J∗∞(x) since then the optimal finite and infinite
horizon costs are the same. Of course, if the optimal value function were available there would be
no need to solve a trajectory optimization problem. What properties of the optimal value function
should be retained in the terminal cost? To be effective, the terminal cost should account for the
discarded tail by ensuring that the origin can be reached from the terminal state xu(T ;x) in an
efficient manner (as measured by q). One way to do this is to use an appropriate control Lyapunov
function which is also an upper bound on the cost-to-go.

The following theorem shows that the use of a particular type of CLF is in fact effective,
providing rather strong and specific guarantees.

Theorem 1. [16] Suppose that the terminal cost V (·) is a control Lyapunov function such that

min
u∈Rm

(V̇ + q)(x, u) ≤ 0 (11)

for each x ∈ Ωrv for some rv > 0. Then, for every T > 0 and δ ∈ (0, T], the resulting receding
horizon trajectories go to zero exponentially fast. For each T > 0, there is an r̄(T) ≥ rv such that
ΓT

r̄(T) is contained in the region of attraction of RH(T, δ). Moreover, given any compact subset Λ
of Γ∞, there is a T ∗ such that Λ ⊂ ΓT

r̄(T) for all T ≥ T ∗.

Theorem 1 shows that for any horizon length T > 0 and any sampling time δ ∈ (0, T], the
receding horizon scheme is exponentially stabilizing over the set ΓT

rv
. For a given T , the region of

attraction estimate is enlarged by increasing r beyond rv to r̄(T) according to the requirement that
V (x∗

T (T ;x)) ≤ r2
v on that set. An important feature of the above result is that, for operations with

the set ΓT
r̄(T), there is no need to impose stability ensuring constraints which would likely make the

online optimizations more difficult and time consuming to solve.
An important benefit of receding horizon control is its ability to handle state and control

constraints. While the above theorem provides stability guarantees when there are no constraints
present, it can be modified to include constraints on states and controls as well. In order to ensure
stability when state and control constraints are present, the terminal cost V (·) should be a local
CLF satisfying minu∈U V̇ + q(x, u) ≤ 0 where U is the set of controls where the control constraints
are satisfied. Moreover, one should also require that the resulting state trajectory xCLF (·) ∈ X ,
where X is the set of states where the constraints are satisfied. (Both X and U are assumed to be
compact with origin in their interior). Of course, the set Ωrv will end up being smaller than before,
resulting in a decrease in the size of the guaranteed region of operation (see [20] for more details).

9

15

4 Real-Time Trajectory Generation and Differential Flatness

In this section we demonstrate how to use differential flatness to find fast numerical algorithms for
solving optimal control problems. We consider the affine nonlinear control system

ẋ = f(x) + g(x)u, (12)

where all vector fields and functions are smooth. For simplicity, we focus on the single input case,
u ∈ R. We wish to find a trajectory of equation (12) that minimizes the performance index (10),
subject to a vector of initial, final, and trajectory constraints

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,

lbf ≤ ψf (x(tf), u(tf)) ≤ ubf ,

lbt ≤ S(x, u) ≤ ubt,

(13)

respectively. For conciseness, we will refer to this optimal control problem as

min
(x,u)

J(x, u) subject to

{
ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.
(14)

4.1 Numerical Solution Using Collocation

A numerical approach to solving this optimal control problem is to use the direct collocation method
outlined in Hargraves and Paris [12]. The idea behind this approach is to transform the optimal
control problem into a nonlinear programming problem. This is accomplished by discretizing time
into a grid of N − 1 intervals

t0 = t1 < t2 < . . . < tN = tf (15)

and approximating the state x and the control input u as piecewise polynomials x̂ and û, respec-
tively. Typically a cubic polynomial is chosen for the states and a linear polynomial for the control
on each interval. Collocation is then used at the midpoint of each interval to satisfy equation (12).
Let x̂(x(t1), ..., x(tN)) and û(u(t1), ..., u(tN)) denote the approximations to x and u, respectively,
depending on (x(t1), ..., x(tN)) ∈ R

nN and (u(t1), ..., u(tN)) ∈ R
N corresponding to the value of

x and u at the grid points. Then one solves the following finite dimension approximation of the
original control problem (14):

min
y∈RM

F (y) = J(x̂(y), û(y)) subject to

⎧⎪⎪⎨
⎪⎪⎩

˙̂x − f(x̂(y)) + g(x̂(y))û(y) = 0,
lb ≤ c(x̂(y), û(y)) ≤ ub,

∀t =
tj + tj+1

2
j = 1, . . . , N − 1

(16)

where y = (x(t1), u(t1), . . . , x(tN), u(tN)), and M = dim y = (n + 1)N .
Seywald [28] suggested an improvement to the previous method (see also [2] page 362). Following

this work, one first solves a subset of system dynamics in (14) for the the control in terms of
combinations of the state and its time derivative. Then one substitutes for the control in the
remaining system dynamics and constraints. Next all the time derivatives ẋi are approximated by
the finite difference approximations

˙̄x(ti) =
x(ti+1) − x(ti)

ti+1 − ti

10

16

to get
p(˙̄x(ti), x(ti)) = 0
q(˙̄x(ti), x(ti)) ≤ 0

}
i = 0, ..., N − 1.

The optimal control problem is turned into

min
y∈RM

F (y) subject to

{
p(˙̄x(ti), x(ti)) = 0
q(˙̄x(ti), x(ti)) ≤ 0

(17)

where y = (x(t1), . . . , x(tN)), and M = dim y = nN . As with the Hargraves and Paris method, this
parameterization of the optimal control problem (14) can be solved using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimensionality of the Hargraves
and Paris method, where both the states and the input are the unknowns. This induces substantial
improvement in numerical implementation.

4.2 Differential Flatness Based Approach

The results of Seywald give a constrained optimization problem in which we wish to minimize a
cost functional subject to n−1 equality constraints, corresponding to the system dynamics, at each
time instant. In fact, it is usually possible to reduce the dimension of the problem further. Given
an output, it is generally possible to parameterize the control and a part of the state in terms of
this output and its time derivatives. In contrast to the previous approach, one must use more than
one derivative of this output for this purpose.

When the whole state and the input can be parameterized with one output, the system is dif-
ferentially flat, as described in Section 2. When the parameterization is only partial, the dimension
of the subspace spanned by the output and its derivatives is given by r the relative degree of this
output [14]. In this case, it is possible to write the system dynamics as

x = α(z, ż, . . . , z(q))

u = β(z, ż, . . . , z(q))
Φ(z, ż, . . . , zn−r) = 0

(18)

where z ∈ R
p, p > m represents a set of outputs that parameterize the trajectory and Φ : R

n ×R
m

represents n − r remaining differential constraints on the output. In the case that the system is
flat, r = n and we eliminate these differential constraints.

Unlike the approach of Seywald, it is not realistic to use finite difference approximations as
soon as r > 2. In this context, it is convenient to represent z using B-splines. B-splines are
chosen as basis functions because of their ease of enforcing continuity across knot points and ease
of computing their derivatives. A pictorial representation of such an approximation is given in
Figure 3. Doing so we get

zj =
pj∑

i=1

Bi,kj
(t)Cj

i , pj = lj(kj − mj) + mj

where Bi,kj
(t) is the B-spline basis function defined in [6] for the output zj with order kj , Cj

i are
the coefficients of the B-spline, lj is the number of knot intervals, and mj is number of smoothness
conditions at the knots. The set (z1, z2, . . . , zn−r) is thus represented by M =

∑
j∈{1,r+1,...,n} pj

coefficients.

11

17

zj(to)

knotpoint

mj at knotpoints defines smoothness

collocation point

kj − 1 degree polynomial between knotpoints

zj(t)

zj(tf)

Figure 3: Spline representation of a variable.

In general, w collocation points are chosen uniformly over the time interval [to, tf] (though opti-
mal knots placements or Gaussian points may also be considered). Both dynamics and constraints
will be enforced at the collocation points. The problem can be stated as the following nonlinear
programming form:

min
y∈RM

F (y) subject to

{
Φ(z(y), ż(y), . . . , z(n−r)(y)) = 0

lb ≤ c(y) ≤ ub
(19)

where

y = (C1
1 , . . . , C1

p1
, Cr+1

1 , . . . , Cr+1
pr+1

, . . . , Cn
1 , . . . , Cn

pn
).

The coefficients of the B-spline basis functions can be found using nonlinear programming.
A software package called Nonlinear Trajectory Generation (NTG) has been written to solve

optimal control problems in the manner described above (see [23] for details). The sequential
quadratic programming package NPSOL by [11] is used as the nonlinear programming solver in
NTG. When specifying a problem to NTG, the user is required to state the problem in terms of
some choice of outputs and its derivatives. The user is also required to specify the regularity of
the variables, the placement of the knot points, the order and regularity of the B-splines, and the
collocation points for each output.

5 Implementation on the Caltech Ducted Fan

To demonstrate the use of the techniques described in the previous section, we present an im-
plementation of optimization-based control on the Caltech Ducted Fan, a real-time, flight control
experiment that mimics the longitudinal dynamics of an aircraft. The experiment is show in Fig-
ure 4.

5.1 Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research and development of non-
linear flight guidance and control techniques for Uninhabited Combat Aerial Vehicles (UCAVs).
The fan is a scaled model of the longitudinal axis of a flight vehicle and flight test results validate
that the dynamics replicate qualities of actual flight vehicles [22].

12

18

Figure 4: Caltech Ducted Fan.

The ducted fan has three degrees of freedom: the boom holding the ducted fan is allowed
to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting horizontal and vertical
displacements. Also, the wing/fan assembly at the end of the boom is allowed to rotate about its
center of mass. Optical encoders mounted on the ducted fan, gearing wheel, and the base of the
stand measure the three degrees of freedom. The fan is controlled by commanding a current to
the electric motor for fan thrust and by commanding RC servos to control the thrust vectoring
mechanism.

The sensors are read and the commands sent by a dSPACE multi-processor system, comprised
of a D/A card, a digital I/O card, two Texas Instruments C40 signal processors, two Compaq
Alpha processors, and a ISA bus to interface with a PC. The dSPACE system provides a real-time
interface to the 4 processors and I/O card to the hardware. The NTG software resides on both of
the Alpha processors, each capable of running real-time optimization.

The ducted fan is modeled in terms of the position and orientation of the fan, and their velocities.
Letting x represent the horizontal translation, z the vertical translation and θ the rotation about
the boom axis, the equations of motion are given by

mẍ + FXa − FXb
cos θ − FZb

sin θ = 0
mz̈ + FZa + FXb

sin θ − FZb
cos θ = mgeff

Jθ̈ − Ma +
1
rs

IpΩẋ cos θ − FZb
rf = 0,

(20)

where FXa = D cos γ + L sin γ and FZa = −D sin γ + L cos γ are the aerodynamic forces and FXb

and FZb
are thrust vectoring body forces in terms of the lift (L), drag (D), and flight path angle (γ).

13

19

Ip and Ω are the moment of inertia and angular velocity of the ducted fan propeller, respectively.
J is the moment of ducted fan and rf is the distance from center of mass along the Xb axis to the
effective application point of the thrust vectoring force. The angle of attack α can be derived from
the pitch angle θ and the flight path angle γ by

α = θ − γ.

The flight path angle can be derived from the spatial velocities by

γ = arctan
−ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(α) D = qSCD(α) M = c̄SCM (α),

respectively. The dynamic pressure is given by q = 1
2ρV 2. The norm of the velocity is denoted

by V , S the surface area of the wings, and ρ is the atmospheric density. The coefficients of lift
(CL(α)), drag (CD(α)) and the moment coefficient (CM (α)) are determined from a combination of
wind tunnel and flight testing and are described in more detail in [22], along with the values of the
other parameters.

5.2 Real-Time Trajectory Generation

In this section we describe the implementation of a two degree of freedom controller using NTG to
generate minimum time trajectories in real time. We first give a description of the controllers and
observers necessary for stabilization about the reference trajectory, and discuss the NTG setup used
for the forward flight mode. Finally, we provide example trajectories using NTG for the forward
flight mode on the Caltech Ducted Fan experiment.

Stabilization Around Reference Trajectory

Although the reference trajectory is a feasible trajectory of the model, it is necessary to use a
feedback controller to counteract model uncertainty. There are two primary sources of uncertainty
in our model: aerodynamics and friction. Elements such as the ducted fan flying through its own
wake, ground effects, and thrust not modeled as a function of velocity and angle of attack contribute
to the aerodynamic uncertainty. The friction in the vertical direction is also not considered in the
model. The prismatic joint has an unbalanced load creating an effective moment on the bearings.
The vertical frictional force of the ducted fan stand varies with the vertical acceleration of the
ducted fan as well as the forward velocity. Actuation models are not used when generating the
reference trajectory, resulting in another source of uncertainty.

The separation principle was kept in mind when designing the observer and controller. Since
only the position of the fan is measured, we must estimate the velocities. The observer that works
best to date is an extended Kalman filter. The optimal gain matrix is gain scheduled on the
(estimated) forward velocity. The Kalman filter outperformed other methods that computed the
derivative using only the position data and a filter.

The stabilizing LQR controllers were gain scheduled on pitch angle, θ, and the forward velocity,
ẋ. The pitch angle was allowed to vary from −π/2 to π/2 and the velocity ranged from 0 to 6
m/s. The weights were chosen differently for the hover-to-hover and forward flight modes. For
the forward flight mode, a smaller weight was placed on the horizontal (x) position of the fan

14

20

compared to the hover-to-hover mode. Furthermore, the z weight was scheduled as a function of
forward velocity in the forward flight mode. There was no scheduling on the weights for hover-
to-hover. The elements of the gain matrices for each of the controller and observer are linearly
interpolated over 51 operating points.

Nonlinear Trajectory Generation Parameters

We solve a minimum time optimal control problem to generate a feasible trajectory for the system.
The system is modeled using the nonlinear equations described above and computed the open loop
forces and state trajectories for the nominal system. The three outputs z1 = x, z2 = z, and z3 = θ
are each parameterized with four (intervals), sixth order, C4 (multiplicity), piecewise polynomials
over the time interval scaled by the minimum time. The last output (z4 = T), representing the time
horizon to be minimized, is parameterized by a scalar. By choosing the outputs to be parameterized
in this way, we are in effect controlling the frequency content of inputs. Since we are not including
the actuators in the model, it would be undesirable to have inputs with a bandwidth higher than
the actuators. There are a total of 37 variables in this optimization problem. The trajectory
constraints are enforced at 21 equidistant breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the outputs. Clearly
there is a trade between the parameters (variables, initial values of the variables, and breakpoints)
and measures of performance (convergence, run-time, and conservative constraints). Extensive
simulations were run to determine the right combination of parameters to meet the performance
goals of our system.

Forward Flight

To obtain the forward flight test data, the operator commanded a desired forward velocity and
vertical position with the joysticks. We set the trajectory update time, δ to 2 seconds. By rapidly
changing the joysticks, NTG produces high angle of attack maneuvers. Figure 5(a) depicts the
reference trajectories and the actual θ and ẋ over 60 sec. Figure 5(b) shows the commanded forces
for the same time interval. The sequence of maneuvers corresponds to the ducted fan transitioning
from near hover to forward flight, then following a command from a large forward velocity to a
large negative velocity, and finally returning to hover.

Figure 6 is an illustration of the ducted fan altitude and x position for these maneuvers. The
air-foil in the figure depicts the pitch angle (θ). It is apparent from this figure that the stabilizing
controller is not tracking well in the z direction. This is due to the fact that unmodeled frictional
effects are significant in the vertical direction. This could be corrected with an integrator in the
stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average computation time
was less than one second. Each of the 30 trajectories converged to an optimal solution and was
approximately between 4 and 12 seconds in length. A random initial guess was used for the first
NTG trajectory computation. Subsequent NTG computations used the previous solution as an
initial guess. Much improvement can be made in determining a “good” initial guess. Improvement
in the initial guess will improve not only convergence but also computation times.

5.3 Model Predictive Control

The results of the previous section demonstrate the ability to compute optimal trajectories in
real time, although the computation time was not sufficiently fast for closing the loop around the

15

21

110 120 130 140 150 160 170 180
−4

−2

0

2

4

6

t

x’
x’

act
x’

des

110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

3

t

θ

θ
act

θ
des

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

f
x

f z

constraints
desired

(a) (b)

Figure 5: Forward Flight Test Case: (a) θ and ẋ desired and actual, (b) desired FXb
and FZb

with
bounds.

optimization. In this section, we make use of a shorter update time δ, a fixed horizon time T with
a quadratic integral cost, and a CLF terminal cost to implement the receding horizon controller
described in Section 3.

We have implemented the receding horizon controller on the ducted fan experiment where the
control objective is to stabilize the hover equilibrium point. The quadratic cost is given by

q(x, u) =
1
2
x̂T Qx̂ +

1
2
ûT Rû

V (x) = γx̂T Px̂
(21)

where
x̂ = x − xeq = (x, z, θ − π/2, ẋ, ż, θ̇)
û = u − ueq = (FXb

− mg,FZb
)

Q = diag{4, 15, 4, 1, 3, 0.3}
R = diag{0.5, 0.5},

γ = 0.075 and P is the unique stable solution to the algebraic Riccati equation corresponding to
the linearized dynamics of equation (3) at hover and the weights Q and R. Note that if γ = 1/2,
then V (·) is the CLF for the system corresponding to the LQR problem. Instead V is a relaxed (in
magnitude) CLF, which achieved better performance in the experiment. In either case, V is valid
as a CLF only in a neighborhood around hover since it is based on the linearized dynamics. We
do not try to compute off-line a region of attraction for this CLF. Experimental tests omitting the
terminal cost and/or the input constraints leads to instability. The results in this section show the
success of this choice for V for stabilization. An inner-loop PD controller on θ, θ̇ is implemented
to stabilize to the receding horizon states θ∗T , θ̇∗T . The θ dynamics are the fastest for this system
and although most receding horizon controllers were found to be nominally stable without this
inner-loop controller, small disturbances could lead to instability.

The optimal control problem is set-up in NTG code by parameterizing the three position states
(x, z, θ), each with 8 B-spline coefficients. Over the receding horizon time intervals, 11 and 16

16

22

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

al
t (

m
)

x (m)

x vs. alt

Figure 6: Forward Flight Test Case: Altitude and x position (actual (solid) and desired (dashed)).
Airfoil represents actual pitch angle (θ) of the ducted fan.

breakpoints were used with horizon lengths of 1, 1.5, 2, 3, 4 and 6 seconds. Breakpoints specify the
locations in time where the differential equations and any constraints must be satisfied, up to some
tolerance. The value of Fmax

Xb
for the input constraints is made conservative to avoid prolonged

input saturation on the real hardware. The logic for this is that if the inputs are saturated on the
real hardware, no actuation is left for the inner-loop θ controller and the system can go unstable.
The value used in the optimization is Fmax

Xb
= 9 N.

Computation time is non-negligible and must be considered when implementing the optimal
trajectories. The computation time varies with each optimization as the current state of the ducted
fan changes. The following notational definitions will facilitate the description of how the timing
is set-up:

i Integer counter of MPC computations
ti Value of current time when MPC computation i started

δc(i) Computation time for computation i
u∗

T (i)(t) Optimal output trajectory corresponding to computation i, with time
interval t ∈ [ti, ti + T]

A natural choice for updating the optimal trajectories for stabilization is to do so as fast as possible.
This is achieved here by constantly resolving the optimization. When computation i is done,
computation i + 1 is immediately started, so ti+1 = ti + δc(i). Figure 7 gives a graphical picture
of the timing set-up as the optimal input trajectories u∗

T (·) are updated. As shown in the figure,
any computation i for u∗

T (i)(·) occurs for t ∈ [ti, ti+1] and the resulting trajectory is applied for
t ∈ [ti+1, ti+2]. At t = ti+1 computation i + 1 is started for trajectory u∗

T (i + 1)(·), which is applied
as soon as it is available (t = ti+2). For the experimental runs detailed in the results, δc(i) is
typically in the range of [0.05, 0.25] seconds, meaning 4 to 20 optimal control computations per
second. Each optimization i requires the current measured state of the ducted fan and the value of
the previous optimal input trajectories u∗

T (i−1) at time t = ti. This corresponds to, respectively, 6
initial conditions for state vector x and 2 initial constraints on the input vector u. Figure 7 shows
that the optimal trajectories are advanced by their computation time prior to application to the
system. A dashed line corresponds to the initial portion of an optimal trajectory and is not applied
since it is not available until that computation is complete. The figure also reveals the possible
discontinuity between successive applied optimal input trajectories, with a larger discontinuity

17

23

ti+2

time

Input

computation
(i)

computation
(i+1)

Legend

computed applied unused

δc(i) δc(i+1)

 *u (i-1) T

ti+1 ti

 *u (i) T

 *u (i+1) T
X

X X X

X X

X
X

X

Figure 7: Receding horizon input trajectories

more likely for longer computation times. The initial input constraint is an effort to reduce such
discontinuities, although some discontinuity is unavoidable by this method. Also note that the
same discontinuity is present for the 6 open-loop optimal state trajectories generated, again with a
likelihood for greater discontinuity for longer computation times. In this description, initialization
is not an issue because we assume the receding horizon computations are already running prior to
any test runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller to a 6 meter horizontal
offset, which is effectively engaging a step-response to a change in the initial condition for x. The
following details the effects of different receding horizon control parameterizations, namely as the
horizon changes, and the responses with the different controllers to the induced offset.

The first comparison is between different receding horizon controllers, where time horizon is
varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses 16 breakpoints. Figure 8(a)
shows a comparison of the average computation time as time proceeds. For each second after
the offset was initiated, the data corresponds to the average run time over the previous second
of computation. Note that these computation times are substantially smaller than those reported
for real-time trajectory generation, due to the use of the CLF terminal cost versus the terminal
constraints in the minimum-time, real-time trajectory generation experiments.

There is a clear trend toward shorter average computation times as the time horizon is made
longer. There is also an initial transient increase in average computation time that is greater for
shorter horizon times. In fact, the 6 second horizon controller exhibits a relatively constant average
computation time. One explanation for this trend is that, for this particular test, a 6 second
horizon is closer to what the system can actually do. After 1.5 seconds, the fan is still far from the
desired hover position and the terminal cost CLF is large, likely far from its region of attraction.
Figure 8(b) shows the measured x response for these different controllers, exhibiting a rise time of
8–9 seconds independent of the controller. So a horizon time closer to the rise time results in a
more feasible optimization in this case.

18

24

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Average run time for previous second of computation

seconds after initiation

av
er

ag
e

ru
n

tim
e

(s
ec

on
ds

)
T = 1.5
T = 2.0
T = 3.0
T = 4.0
T = 6.0

−5 0 5 10 15 20 25
−1

0

1

2

3

4

5

6
MPC response to 6m offset in x for various horizons

time (sec)

x
(m

)

 step ref
+ T = 1.5
o T = 2.0
* T = 3.0
x T = 4.0
 . T = 6.0

Figure 8: Receding horizon control: (a) moving one second average of computation time for MPC
implementation with varying horizon time, (b) response of MPC controllers to 6 meter offset in x
for different horizon lengths.

6 Summary and Conclusions

This chapter has given a survey of some basic concepts required to analyze and implement on-
line control customization via optimization-based control. By making use of real-time trajectory
generation algorithms that exploit geometric structure and implementing receding horizon control
using control Lyapunov functions as terminal costs, we have been able to demonstrate closed-loop
control on a flight control experiment. These results build on the rapid advances in computational
capability over the past decade, combined with careful use of control theory, system structure, and
numerical optimization. A key property of this approach is that it explicitly handles constraints in
the input and state vectors, allowing complex nonlinear behavior over large operating regions.

The framework presented here is a first step toward a fundamental shift in the way that con-
trol laws are designed and implemented. By moving the control design into the system itself, it
becomes possible to implement much more versatile controllers that respond to changes in the sys-
tem dynamics, mission intent, and environmental constraints. Experimental results have validated
this approach in the case of manually varied end points, a particularly simple version of change in
mission.

Future control systems will continue to be more complex and more interconnected. An impor-
tant element will be the networked nature of future control systems, where many individual agents
are combined to allow cooperative control in dynamic, uncertain, and adversarial environments.
While many traditional control paradigms will not operate well for these classes of systems, the
optimization-based controllers presented here can be transitioned to systems with strongly non-
linear behavior, communications delays, and mixed continuous and discrete states. Thus, while
traditional frequency domain techniques are likely to remain useful for isolated systems, design of
controllers for large-scale, complex, networked systems will increasingly rely on techniques based
on Lyapunov theory and (closed loop) optimal control.

However, there are still many gaps in the theory and practice of optimization-based control.
Guaranteed robustness, the hallmark of modern control theory, is largely absent from our present
formulation and will require substantial work in extending the theory. Existing approaches such as

19

25

differential games are not likely to work in an online environment, due to the extreme computational
cost required to solve such problems. Furthermore, while the extension to hybrid systems with
mixed continuous and discrete variables (in both states and time) is conceivable at the theoretical
level, effective computational tools for mixed integer programs must be developed that exploit the
system structure to achieve fast computation.

Finally, we note that existing optimization-based techniques are still primarily aimed at the
lowest levels of control, despite their potential to apply more broadly. Higher level protocols for
control and decision making must be developed that build on the strength of optimization-based
control, but they are likely to require substantially new paradigms and approaches. At the same
time, new methods in designing software systems that take into account external dynamics and
environmental factors are also required.

Acknowledgments

The authors would like to thank Mario Sznaier and John Doyle for many helpful discussions on the
results presented here. The support of the Software Enabled Control (SEC) program and the SEC
team members is also gratefully acknowledged.

References

[1] A. E. Bryson. Dynamic optimization. Addison Wesley, 1999.

[2] C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

[3] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray. Model predictive control of a
thurst-vectored flight control experiment. In Proc. IFAC World Congress, 2002. Submitted.

[4] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat nonlinear systems.
Comptes Rendus des Séances de l’Académie des Sciences, 315:619–624, 1992. Serie I.

[5] R. Franz, M. B. Milam, and J. E. Hauser. Applied receding horizon control of the caltech
ducted fan. In Proc. American Control Conference, 2002. Submitted.

[6] P. E. Gill, W. Murray, M. A. Saunders, and M. Wright. User’s Guide for NPSOL 5.0: A
Fortran Package for Nonlinear Programming. Systems Optimization Laboratory, Stanford
University, Stanford, CA 94305.

[7] C. Hargraves and S. Paris. Direct trajectory optimization using nonlinear programming and
collocation. AIAA J. Guidance and Control, 10:338–342, 1987.

[8] J. Hauser and H. Osinga. On the geometry of optimal control: the inverted pendulum example.
In American Control Conference, 2001.

[9] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 2nd edition, 1989.

[10] A. Jadbabaie. Nonlinear Receding Horizon Control: A Control Lyapunov Function Approach.
PhD thesis, California Institute of Technology, Control and Dynamical Systems, 2001.

[11] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding horizon control of nonlinear
systems. IEEE Transactions on Automatic Control, 46, May 2001.

20

26

[12] M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design.
Wiley, 1995.

[13] E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Wiley, New York, 1967.

[14] P. Martin, S. Devasia, and B. Paden. A different look at output tracking—Control of a VTOL
aircraft. Automatica, 32(1):101–107, 1994.

[15] D. Q. Mayne, J. B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–814, 2000.

[16] M. B. Milam, R. Franz, and R. M. Murray. Real-time constrained trajectory generation applied
to a flight control experiment. In Proc. IFAC World Congress, 2002. Submitted.

[17] M. B. Milam and R. M. Murray. A testbed for nonlinear flight control techniques: The Caltech
ducted fan. In Proc. IEEE International Conference on Control and Applications, 1999.

[18] M. B. Milam, K. Mushambi, and R. M. Murray. A computational approach to real-time
trajectory generation for constrained mechanical systems. In Proc. IEEE Control and Decision
Conference, 2000.

[19] R. M. Murray. Nonlinear control of mechanical systems: A Lagrangian perspective. Annual
Reviews in Control, 21:31–45, 1997.

[20] N. Petit, M. B. Milam, and R. M. Murray. Inversion based trajectory optimization. In IFAC
Symposium on Nonlinear Control Systems Design (NOLCOS), 2001.

[21] J. A. Primbs, V. Nevistić, and J. C. Doyle. A receding horizon generalization of pointwise
min-norm controllers. IEEE Transactions on Automatic Control, 45:898–909, June 2000.

[22] S.J. Qin and T.A. Badgwell. An overview of industrial model predictive control technology.
In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, Fifth International Conference on
Chemical Process Control, pages 232–256, 1997.

[23] H. Seywald. Trajectory optimization based on differential inclusion. J. Guidance, Control and
Dynamics, 17(3):480–487, 1994.

[24] L. Singh and J. Fuller. Trajectory generation for a uav in urban terrain, using nonlinear mpc.
In Proceedings of the American Control Conference, 2001.

[25] E. D. Sontag. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal
of Control and Optimization, 21:462–471, 1983.

[26] M. J. van Nieuwstadt and R. M. Murray. Rapid hover to forward flight transitions for a thrust
vectored aircraft. Journal of Guidance, Control, and Dynamics, 21(1):93–100, 1998.

[27] M. J. van Nieuwstadt and R. M. Murray. Real time trajectory generation for differentially flat
systems. International Journal of Robust and Nonlinear Control, 8(11):995–1020, 1998.

21

27

Distributed Computation for Cooperative Control

Eric Klavins Richard M. Murray
Electrical Engineering Control and Dynamical Systems

University of Washington California Institute of Technology

Seattle, WA Pasadena, CA

klavins@washington.edu murray@cds.caltech.edu

Abstract

A cooperative control system consists of multiple, autonomous components interacting to
control their environment. Examples include air traffic control systems, automated factories,
robot soccer teams and sensor/actuator networks. Designing such systems requires a combination
of tools from control theory and distributed systems. In this article, we review some of these
tools and then focus on the Computation and Control Language, CCL, which we have developed
as a modeling tool and a programming language for cooperative control systems.

1 Introduction

A cooperative control system consists of multiple, autonomous components interacting to control
their environment. Examples include air traffic control systems, automated factories, robot soccer
teams and sensor/actuator networks. In each of these systems, a component reacts to its environ-
ment and to messages received from neighboring components. Thus, a cooperative control system
is at once a controlled physical system and a distributed computer. Designing cooperative control
systems, therefore, requires a combination of tools from control theory and distributed systems.
A motivating example for our work is the RoboFlag game [3], a successor to the RoboCup robotic

soccer tournament dedicated to the goal of building a robotic soccer team by 2050. RoboFlag is
a version of “capture the flag”, using the setup illustrated in Figure 1. Each team (red and blue)
has a home zone, a defensive zone containing a flag and between eight and ten robots. The game
can be played either with autonomous controllers or with one or two humans in the loop giving
high-level directives to their teams. The goal of the red team, say, is to capture the blue team’s flag
and return it to the red home zone, meanwhile defending its own flag. If a red robot is “tagged”
or touched by a blue robot while on the blue side of the field, it must return to its home zone for a
“time out”. The blue robots have a symmetric goal.
In addition to having to control their own motions, the robots have limited sensing capabilities

and are organized as a distributed computational system, requiring that information be commu-
nicated between robots and across limited bandwidth links. Each robot must, therefore, contain
a program that allows it to control its motion, react to events near it and participate in group
strategies. Designing such programs so that they are correct, robust and fault tolerant is the goal
of cooperative control.

Control vs. Distributed Computation Two very different worlds collide in cooperative control
problems such as the RoboFlag game. On one hand, things like robots are electro-mechanical objects

1

28

Richard Murray
Appendix C

In IEEE Pervasive Computing, 2004
http://www.cds.caltech.edu/~murray/papers/2003m_km03-ieeepc.html

Figure 1: The RoboFlag game. Two teams of robots, red and blue, must defend their flags while
attempting to capture the other team’s flag.

whose interactions with the physical world we would like to manage. We usually speak of control
with respect to a dynamical model of the world, such as a set of differential equations with inputs
and outputs. The control problem is that of “closing the loop”, that is, defining input rules as
functions of the output values to produce a desired behavior. As control engineers, we worry about
the stability, robustness and performance of the systems we design. On the other hand, a group
of robots is by all rights a distributed computational system, each robot having its own processor
and (presumably) some method of communicating with the processors on other robots. Presently,
there are no universally agreed upon models for distributed systems: We might use I/O automata,
process algebras or guarded command languages to describe how messages are passed between robots
or how instructions on different processors may be interleaved. As distributed systems engineers,
we worry about protocol design, deadlock avoidance and communication complexity.
The difficulty is that we cannot temporarily ignore one of these worlds while concentrating on

design problems in the other. As cooperative control engineers, we must be concerned with com-
munication protocols because they introduce delays, which are notorious for degrading performance
and causing instabilities. We must mind the communication complexity of the system: A truly
decentralized control algorithm will require only a few messages to be passed from robot to robot
and in particular will not demand that each robot know the state of every other robot in order to
act. Unfortunately, most tried and true control techniques are blind to these problems. As dis-
tributed systems engineers, we must design protocols that respect the dynamics of the environment:
For example, a protocol intended to reach a consensus among a formation of aircraft about how
to respond to a threat must finish before the momentum of the aircraft carries them inescapably
close to the threat. In contrast, momentum and acceleration are often not a concern in traditional
distributed systems wherein, for example, a bank customer can simply wait for a distributed online
transaction to complete (his momentum being of no concern to the bank).

2

29

At the heart of the difference between control engineering and distributed system engineering
lies the role of the environment in the design process. In control, the unpredictable, messy and
incompletely understood environment is tightly coupled with a control process designed to reject
disturbances from the environment to acheive a certain desired operating condition. For example,
the autopilot on an aircraft will attempt to maintain altitude, heading and speed despite wind
gusts and turbulance. The beauty of feedback control is that, to a large extent, it is robust to the
differences in the mathematical model of how the environment affects the system and the actual
effect of the environment on the system.
In contrast, in computational systems and distributed systems in particular, there often is no

explicit environment whatsoever, and the notion of robustness to modeling errors is not even an
issue. Such systems consist of nothing but the internal states (memories, file systems) of the
processes involved. The task for the distributed systems engineer is to manipulate this information
and keep it consistent among the various processes. When the issue of robustness does arise, it is
with respect to whether the system can continue to function in the event that one of the processors
fails.
When we design multi-vehicle systems, sensor-actuator networks or automated factories we must

merge these two ways of looking at the problem. A dynamical model of the response of the system to
its environment is mandatory, and so is an understanding of how information flows from process to
process. We must ask questions about the stability of motions in the environment and the stability
of information in the network. We must ensure that the system is robust to disturbances both
physical, such as resulting from a wind gust, and logical, such as resulting from a hard reboot of a
processor.

Synopsis In this article we describe at a high level some of the methods that are used to bridge
these two ways of modeling and designing systems. For the sake of brevity, our review is incomplete
and biased toward our own work on the Computation and Control Language or CCL, which we
have begun to use for modeling control systems, especially distributed ones. To illustrate some of
the concepts involved, we present a fairly complete example of a multi-robot task, inspired by the
RoboFlag scenario, and show what kinds of questions we can answer about the model. Finally, we
discuss one of the features of CCL, which is that it can be used as a programming language as well
as a modeling tool so that the models we write down in CCL can be directly simulated or executed
on hardware.

2 Models

The first step toward determining that a cooperative control system has a given property is to write
down a description, or model, of what the system actually is to some appropriate level of detail.
A control engineer might supply you with a set of differential equations that describe the closed
loop (system + control) dynamics of the system. Unfortunately, once the control rules have been
implemented in a distributed fashion, a simple differential equations description of the system fails
to capture many important qualities, as we noted in the introduction. Thus, this description must
be combined in some way with a description of the distributed system that implements the control
law and that accounts for the effects of “spreading” the control law out among multiple processors.
In this section we review several formalisms for writing down (or modeling) what computation

and control systems system are and what distributed systems are, starting with Hybrid Automata,
then I/O Automata, temporal logic finally and UNITY. Each of these formalisms have qualities

3

30

we need for modeling Multi-Vehicle Systems, but none is entirely adequate for our purposes. Our
main goal in this section, besides review, is to shed light on several important issues that led us to
our present use of the Computation and Control Language (CCL), which we describe in the next
sections.

Hybrid Automata A popular way to write down a model of system that has both continuous
dynamics and discrete “modes” of control is as a Hybrid Automaton or HA [1]. HAs come in many
flavors and we summarize their commonalities here. A simple finite automaton consists of a finite
set of states and a set of transitions between states. For example, the level of water in a leaky
water tank may be increasing (state one) or decreasing (state two). Transitions between these two
states might correspond to opening (transition on) or closing (transition off) an input valve on the
tank. An HA extends the idea of a simple finite automaton with continuous variables that usually
denote physical quantities (such as the exact level of water in the tank). An HA must say how its
continuous variables change while any given state is active using a differential inclusions of the form

0 <
d

dt
h < 0.1

which might mean that the level of water h in a tank is increasing at a rate between 0 m/s and 0.1
m/s.
An HA assigns guards and rules to each transition. A guard is a predicate on the continuous

state, such as h > 5 (read “the value of h is 5”). If the guard on a transition from state one to state
two becomes true, then the discrete state changes from one to two. A rule is an assignment, such
as t := 0 which might denote the reseting of a timer variable. When a transition is taken, any rules
associated with it are executed.
An important aspect of HAs is that they can be composed to make larger models. Roughly,

the composition of two HAs H1 and H2 is another HA denoted H1||H2 whose state set is (more or
less) the cross product of the state sets of its constituents. Any transitions from H1 and H2 that
have the same label must synchronize. For example, a water tank controller might issue on and off
commands that would be synchronized with (i.e. technically they are the same transition as) the
on and off transitions in the water tank model. This form of composition is acceptable for small
systems. However, it is awkward for the sorts of systems found in cooperative control. For example,
suppose each robot in a multi-robot system is modeled by an automaton Ri with r states. A set of
n robots is modeled by R1||...||Rn which has rn states. Furthermore, any transitions with the same
label must be synchronized in the composition, which would seem to suggest that the robots are
not entirely independent in this model.

I/O Automata A very successful tool for modeling distributed systems is the I/O automaton
(IOA) model [9]. In it, an individual component is modeled as an automaton as above, except with
possibly an infinite set of states. Transitions, called actions in IOA theory, are labeled as either
input, output or internal. The composition of multiple components is much different than the cross
product composition discussed above, however. If an IOA with output action a is composed with
other IOAs, then the other IOAs must label a as an input action. An execution of an IOA consists of
a sequence of actions taken by the components one at a time. A component may execute an internal
action, in which case only its local state changes. A component may also execute an output action,
say a, that causes all other components with (input) actions labeled by a to synchronously execute
their local copies of action a, thereby changing their states. The one restriction, called a fairness
constraint, is that each component must be allowed to take a non-input action infinitely often in

4

31

any execution. The result is an interleaving of actions taken by each component, with occasional
partial synchronization of some of the components. In the example above, the composition of n

robots in this model would have an n-dimensional vector describing its state (still living in an rn

sized space, of course, but somehow more parsimonious). Furthermore, the interleaving execution
model more naturally reflects the possible ways that individual components may execute in parallel.
In particular, a property P of an IOA is said to hold if and only if it holds for all possible fairly
interleaved executions and is, therefore, robust in some sense to how the actions of the components
are scheduled. IOAs have been used extensively to model distributed algorithms [9] and have proved
quite amenable to analysis.
The IOA model has been extended to handle systems with continuous state variables that change

according to differential equations. The result is the very comprehensive, if somewhat sophisticated,
Hybrid I/O Automata (HIOA) Model [10]. In the HIOA model, continuous time variables follow
trajectories according to the equations corresponding to the state of the HIOA. The trajectories are
punctuated by actions taken by the various components. Because the continuous time variables of
each component evolve in parallel, however, this can lead to very complex overall trajectories that
are difficult to reason about.

Temporal Logic An important tool used to describe distributed systems is temporal logic. In
temporal logic, we reason about the possible behaviors of a system (such as arising from an au-
tomaton model or a program written in Java, for example). Behaviors are defined to be sequences
of states of a system. A state s, essentially a “snapshot” of a system, might assign the value of a
variable x to 7 and the value of y to true. A behavior describes how the values of x and y change.
It is important to note that there is no notion of continuous time per se in temporal logic, only the
notion that a given state comes before or after some other state in a behavior.
Formulas in temporal logic are of the form “always P” (written 2P) or “eventually Q” (or 3Q),

where P and Q are predicates on states. For example, if σ is the behavior

x := 1, x := 2, x := 3, ...,

assigning x to k in σk, then the statement 2x > 0 is true of σ while the statement 3x < 0 is false
of σ. Temporal logic also defines the notion of an action as a relation between states. We usually
write, for example, x′ = x + 1 to denote relations between states and say that s is related to t by
the action x′ = x + 1 if the value of x in state t is equal to the value of x in state s plus one. For
example, 2x′ = x+1 is true of σ as defined above. Temporal logic can also be used to reason about
real-time and hybrid systems with the careful use of time variables and yet without any further
formal machinery [7].
A temporal logic formula F specifies a set of allowable behaviors: those behaviors for which F

is true. Thus, we usually call F a specification instead of a formula. If F and G are specifications
then F ⇒ G is true if all the behaviors of F are also behaviors of G. We say that F meets the
specification G. An implementation, or program, is then essentially a temporal logic formula that
admits only one behavior for any initial state. Furthermore, specifications may be composed by
simple conjunction. In our multi-robot example, if R1, ..., Rn are specifications of individual robot
behaviors, then R1 ∧ ... ∧ Rn is their composition.
A complex temporal logic formula usually consists of two parts: a safety specification and a

fairness constraint. The safefty specification is used to state what actions the components of the
system are allowed to take to yield new states. The fairness constraint states when a component
may take an action — infinitely often, for example. In a super simple multi-robot system, a robot

5

32

i might be described by the formula

2(x′

i = xi + 1 ∨ x′

i = xi) ∧ 23(x′

i 6= xi)

which states that the robot may move forward or stay still (safety) and that eventually it must move
(fairness). Fairness constraints tend to get fairly complex, especially when real time is considered,
and are the main source of complexity in temporal logic specifications.
In CCL, which we describe below, temporal logic is the tool we use to state the properties of the

programs we write. A particularly important property is the stability of a predicate. For example,
the formula

32|xi| < ε

states that xi (a robot’s position, say) is eventually always less than ε in magnitude.

UNITY The non-duality of programs and specifications (mentioned above) is heralded as the
beauty of temporal logic and has been used with great success to reason about concurrent systems.
An especially useful result of non-duality is the ease with which specifications may be automati-
cally verified using a combination of model checking and automated theorem proving. However, a
complication of the safety-fairness way of writing a specifcation is that it results in formulas that
do not look very much like programs. In fact, duality may make life simpler. This is the approach
taken by the UNITY formalism for parallel program design [2].
In UNITY, specifications S are written as a set of (possibly guarded) variable assignments. To

arrive at a behavior, we simply start with some initial state, and then non-deterministically pick
assignments one at a time from the set and apply them to the state to get a sequence of states. The
only requirement is that each assignment is applied infinitely often in any behavior. UNITY is thus
a kind of theoretical programming language that runs on an odd sort of non-deterministic machine
in which a particular fairness constraint is built-in. As with CCL (described below), temporal logic
turns out to be the most convenient way to reason about specifications. The general goal is to
determine when a formula F is true of every behavior allowed by a specification S.
In controls, we often imagine that the components of a system are all executing their instructions

at more or less the same frequency. So the fairness constraint adopted by UNITY (and IOAs) that
merely states “each process gets to execute eventually” is somewhat too relaxed. Furthermore,
writing more complicated fairness constraints in temporal logic, such as will be discussed below,
can be rather cumbersome. This was a main motivation for our developing CCL, which we describe
next.

3 CCL

The Computation and Control Language, or CCL, is a modeling language similar in appearance to
UNITY, but interpreted differently. The basic unit of a CCL program is the guarded command (or
simply command) which we describe by example. Formal definitions can be found elsewhere [6].
An example of a guarded command is:

t > 10 : x′
≥ x+ 1 ∧ t′ = 0.

The part before the colon is called the guard and the part after it is called the rule. We interpret
it as follows: If this command is executed in a state where the variable t is greater than 10, then
a new state will result in which the new value of x is greater than or equal to its old value plus 1,

6

33

and the new value of t is 0. All other variables (those not occuring primed) remain the same. If
the command is executed in a state in which t is not greater than 10, then the new state is defined
to be exactly the same as the old state. The execution of a command is called a step. Note that
guarded commands can be non-deterministic, as is the one above since it does not specify the exact
new value for x, only that it should increase by at least 1.
A complete CCL program P = (I, C) consists of two parts: An initial predicate I that says what

the initial values of the variables involved are allowed to be; and a set C of guarded commands.
Here is an example program:

Program P

Initial x1 = x2 = 0
Clauses true : x′

1
= x1 + δ

true : x′

2
= x2 + δ

which, say, describes how the positions of two robots change. It says that initially, the robots are
both at position zero and that they may move forward be δ meters upon taking a step.
CCL program composition is very straightforward. If P1 = (I1, C1) and P2 = (I2, C2), then

their composition is simply P1 ◦ P2 = (I1 ∧ I2, C1 ∪ C2). That is, to obtain the composition of two
programs, conjoin their initial clauses and union their command sets.
A CCL program can be interpreted in various ways, depending on how its commands are sched-

uled for execution (or, equivalently, how we define fairness for the system). The most simple schedule
is: starting with a state consistent with the initial predicate, the commands are executed in the
order they were written down, over and over again. In this case, we could get something like the
following execution for program P :

x1 0 δ δ 2δ 2δ 3δ ...

x2 0 0 δ δ 2δ 2δ ...

A more reasonable scheme, one that accounts for the robots not executing at the same speeds is
called the EPOCH semantics:

EPOCH: All clauses in C must be executed before any of them can be executed again1.
A subsequence where each clause has been executed exactly once (in any order) is called
an epoch.

The EPOCH semantics allow for clauses to be executed in any order, as long as they are all “used
up” before any get used again. A looser scheme is called partial synchronization, or SYNCH(τ)
semantics, where τ is a positive integer:

SYNCH(τ): For any interval of a behavior and for any two commands, the difference
between the number of times each command is executed during the interval must be less
than or equal to τ .

Of course, in the limit as τ approaches infinity we obtain the familiar UNITY fairness constraint:
that each clause must simply be executed infinitely often. Figure 2 illustrates these different in-
tepretations with respect to the two-robot example.
As in UNITY, we express properties of CCL programs as temporal logic formulas and define

P |=S F , read P models F with semantics S, if F is true of all behaviors allowed by program P

under the interpretation S . An instructive result is the following.

1In all interpretations of CCL, a step may also execute no command at all, thereby leaving the state the same.
This is called a stutter step and is useful for technical reasons beyond the scope of this article. See [8] for a discussion
of stutter steps.

7

34

(a) UNITY (b) EOPCH (c) SYNCH(3)

Figure 2: Three different behaviors for the two-robot example. (a) A behavior allowed by the
UNITY semantics. The difference between x1 and x2 may grow arbitrarily large. The loops in
the behavior indicate the occurrence of one or more stutter steps. (b) A behavior allowed by the
EPOCH semantics. After every two non-stutter steps, x1 = x2. (c) A behavior allowed by the
SYNCH(3) semantics. The difference between x1 and x2 is always less than or equal 3.

Theorem 3.1 If P is a CCL program and F is a property, then

(i) P |=SYNCH (τ) F ⇒ P |=SYNCH (τ−1) F

(ii) P |=SYNCH (2) F ⇒ P |=EPOCH F

(iii) P |=EPOCH F ⇒ P |=SYNCH (1) F .

So if a property is true of a CCL program under a given interpretation, it is true for the more
restrictive interpretation as well. This theorem along with the standard inference rules for UNITY
[2], and other rules for reasoning about the more restrictive interpretations above, are the basis for
reasoning about CCL programs in general [6].

Modeling Dynamical Systems: Unlike with HAs (discussed above), CCL programs do not
make explicit use of continuous time. Also, a behavior should not be considered as defining a
discrete time scale either. To make this clear, suppose we had a robot whose velocity is controlled
by an external input. If we let x denote the position of the robot and u denote the commanded
velocity, then the dynamics of the robot can be described by the differential equations

d

dt
x = u.

This equation models the fact that the position is given by the integral of the commanded velocity.
The solution to this equation for constant u is x(t) = x(0) + ut. To model this in CCL, we might
write the program

Program P

Initial x ∈ R

Clauses true : u′ = −x

true : x′ = x+ uδ

where δ is a small positive constant. The first command is supposed to represent the action of the
robot. It senses its location x and sets the new value of u to −x (just as an example). The second

8

35

0 5 10

0

5

10

15 t=0

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.25

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.5

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.75

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

Figure 3: The first four epochs of an execution of Pmathitrf(6). Dots along the x-axis represent
blue defending robots. Other dots represent red attacking robots. Dashed lines represent the current
assignment.

command is the action of the environment, which accounts for the actual motion of the robot. In
the EPOCH semantics, for example, the first command may be executed and then the second, or
vice verse, in each epoch. Thus it is possible that the robot executes its command twice in a row,
which doesn’t really do anything. It is as though the robot’s sensor sent it the same value twice
in a row, even though the environment (the robot’s position) was changing. Only the execution of
the second command by the environment accounts for any real passage of “time”, measured here
by the actual physical motion of the robot. If the second command happens to be executed twice
in a row, it is as though 2δ seconds went by before the robot could again sense its position and act.
The reader should try to convince his/herself that under the SYNCH(τ) semantics, the amount of
“time” between each robot action varies between 1 and τδ seconds.
This treatment of time is a modeling choice on our part, and it is certianly subject to criti-

cism. Our belief is that this is good enough for the problems we consider in which decentralized
computation is as much an issue as physical dynamics, as the extended example in the next section
illustrates. The conflict is between modeling continuous motion and modeling distributed systems,
and CCL has proved, at least in our initial attempts, to strike a reasonable balance.

4 An Extended Example

We now reconsider the RoboFlag game discussed earlier. We do not propose to devise a strategy
that addresses the full complexity of the game. Instead we examine the following very simple
drill or exercise. Some number of blue robots with positions (zi, 0) ∈ R

2 must defend their zone
{(x, y) | y ≤ 0} from an equal number of incoming red robots. The positions of the red robots are
(xi, yi) ∈ R

2. The situation is illustrated in Figure 3.
We first specify the very simplified dynamics of red robot i. It simply moves toward the defensive

zone in small downward steps. When it reaches the defensive zone, it stays there (as there is no
rule describing what to do if yi − δ ≤ 0). The constants min < max describe the boundaries of the

9

36

playing field and δ > 0 is the magnitude of the distance a robot can move in one step.

Program Pred (i)

Initial xi ∈ [min,max] ∧ yi > max
Clauses yi − δ > 0 : y′i = yi − δ

The motion law for the blue team is equally simple. Each blue robot i is assigned to a red robot
α(i). In each step, blue robot i simply moves toward the robot to which it is assigned, as long as
taking such an action does not lead to a collision.

Program Pblue(i)

Initial zi ∈ [min,max] ∧ zi < zi+1

Clauses zi < xα(i) ∧ zi < zi+1 − 2δ : z′i = zi + δ

zi > xα(i) ∧ zi > zi−1 + 2δ : z′i = zi − δ

The dynamics of the entire drill system are defined by the composition

Pdrill (n) = Pred (1) ◦ ... ◦ Pred (n) ◦ Pblue(1) ◦ ... ◦ Pblue(n).

We now add a simple protocol for updating the assignment α. Each robot negotiates with its left
and right neighbors to determine whether it should trade assignments with one of them. Switching
is useful in two situations. First, if i < j and α(j) < α(i), then i and j are in conflict: intercepting
their assigned red robots requires them to pass through each other. Second, if red robot α(i) is too
close to the defensive zone for blue robot i to intercept, but not so for blue robot j, then the two
robots should switch assignments. We define the predicate switch(i, j) to be true if either switching
the assignments of robots i and j decreases the number of red robots that can be tagged or leaves
it the same and decreases the number of conflicts. The protocol is then

Program Pproto(i)

Initial α(i) 6= α(j) if i 6= j

Clauses switch(i, i+ 1) : (α(i)′, α(i+ 1)′) = (α(i+ 1), α(i))

and the full roboflag drill system is given by

Prf (n) = Pdrill (n) ◦ Pproto(1) ◦ ... ◦ Pproto(n − 1).

Properties of Prf The program we have defined has several desirable properties, which we give
an overview of here. Details can be found elsewhere [6]. First, the protocol Prf is self-stabilizing
[4] in that, after an initial transient period, it settles into a mode where no assignment trades are
made. That Prf is self-stabilizing is expressed as

Prf (n) |= 32∀i ¬switch(i, i+ 1)

which states that it is eventually always true that no switches can be made. This is actually true
under any fair interpretation of CCL programs. It can be proved using a Lyapunov style argument
showing that at each step a certain non-negative quantity (essentially the number of conflicting
assignments) must decrease if it is greater than zero. Self-stabilization is crucial in distributed
computing. It states that no matter how the network is perturbed (e.g. by a process failure), it will
eventually return to normal operation.

10

37

However, the duration of the transient is important. In particular, we desire that α stabilize
before the red robots get too close to the defensive zone. Note that under a simple UNITY-like
interpretation of the program, the red robots may move arbitrarily many times before the blue
robots do, which is not our intention. Thus we can also show, roughly, that if the red robots
are “far enough” away, then the blue robot’s assignments will stabilize before they arrive at the
defensive zone if, for example, the EPOCH interpretation is used [6]. Another property that can be
shown include that the blue robots never collide (fairly evident from the guards in Pblue).
We have thus succeeded in formally writing down a complete description of a multi-vehicle task,

albeit a simple one, that captures how the robots move, and how they communicate with each other
to acheive their objective. Furthermore, we are able to express the properties we require of the
program and reason about them.

5 Programming

Because CCL has a simple, precise and formal definition, we can easily encode it in a simple
programming language, which we have done. The main benefit of programming in a language like
CCL is that a CCL program bears a strong resemblance to a CCL model. In fact, they might be
identical. Also, the CCL style of programming is a very natural way to write programs for control
systems, where often a number of threads (here represented by CCL programs) are executed in
parallel (a composition of programs).
Interested readers can obtain a version of the CCL interpreter, called CCLi, at

http://www.cs.caltech.edu/∼klavins/ccl/.

The distribution consists of the intepreter; several libraries for I/O, graphics and inter/intra process
communications; a good number of examples; and a user’s manual. A CCL compiler is under
construction. We describe some of the main features of CCLi here.

Expressions and Type Checking Basic CCLi expressions can be boolean, arithmetic, strings,
lists and records. CCLi also provides lambda abstractions for defining functions (as in Lisp or ML)
and also provides a simple mechanism for linking code written in other languages into CCLi. All
expressions in CCLi are strongly typed and lists and lambda abstractions are polymorphic. CCLi
performs type inference and type checking on programs before attempting to execute them, and
gives useful error messages before exiting if your program is incorrectly typed.

Programs and Composition Programs in CCLi are very similar to how we have defined them
above. Each program consists of a name, a list of parameters, a list of variable declarations and
initializations, and a list of guarded commands. Variables are considered local to a program, unless
they are “shared”. Thus, CCLi defines a new kind of program composition, written as follows:

Q(a1, ..., aq) := R(b1, ..., br) + S(c1, ..., cs) sharing x1, ..., xn

which defines a new program Q in terms of R and S in essentially the same way as standard CCL
composition, except for the “sharing” part. Any variable occuring in R but not appearing in the
list x1, ..., xn is local to R in Q and similarly for S. Any variable in the list x1, ..., xn appearing in
R or S is considered to be the same variable. An example CCLi program illustrating composition
(although not many other features) is shown in Figure 4.

11

38

program plant(a,b,x0,delta) := {

x := x0;

y := x;

u := 0.0;

true : {

x := x + delta * (a * x + b * u),

y := x

}

}

program controller (k) := {

y := 0.0;

u := 0.0;

true : { u := - k * y }

}

program system (x0, a, b, delta) :=

plant (a, b, x0, delta) +

controller (2 * a / b) sharing u, y;

Figure 4: An example CCL program defining a plant (the system to be controlled), a controller,
and their closed loop combination. The controller program can be used to simulate the system
(when composed with plant) or executed on actual hardware if compoed with a hardware interface
program (not listed).

6 Conclusion

Cooperative control presents us with the challenge of building stable control systems in a distributed
control environment. To do this, we must determine at what level we want to model the systems we
build so that we can ensure they have the properties we desire for them. We argued that neither a
standard control theoretic approach nor a distributed systems one is completely adequate. We also
reviewed several possible formalisms that seem to be appropriate for the job, finally settling on the
Computation and Control Language (CCL) which seems to capture many of the essential qualities
of cooperative control systems and allows us to write succinct and natural specifications and reason
about their behaviors. Finally, CCL can be used to define a programming language, CCLi, that
closely mirrors the CCL formalism so that our programs and models are almost one and the same.
We have found CCL useful in other situations besides reasoning about specifications. We have,

for example, used CCL to express robot communication schemes so that reasoning about their
communication complexity is straightforward [5]. In addition we have begun to explore other control
related problems such as determining the state of a communications protocol (written in CCL) based
on the external movements of its participants [11].
Using formalisms like CCL to do control systems design is a young endeavor and many open

problems remain. For example, a main shortcoming of discrete models like CCL is that the notion
of robustness to small perturbations, seeming to require a metric on the state space, is not well
understood, much less defined. This notion is crucial to traditional control theory. Understanding
this and similar problems will enable tools from control theory and distributed computation to be
used in greater harmony to build the complex control networks that promise to be ubiquitous in
our future.

12

39

References

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In Hybrid Systems I, LNCS
736, pages 209–229. Springer-Verlag, 1993.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addision-Wesley, 1988.

[3] R. D’Andrea, R. M. Murray, J. A. Adams, A. T. Hayes, M. Campbell, and A. Chaudry. The
RoboFlag Game. In American Controls Conference, 2003.

[4] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the
ACM, 17(11):643–644, November 1974.

[5] E. Klavins. Communication complexity of multi-robot systems. InWorkshop on the Algorithmic
Foundations of Robotics, December 2002.

[6] E. Klavins. A formal model of a multi-robot control and communication task. In 42nd IEEE
Conference on Decision and Control, Maui, HI, December 2003.

[7] L. Lamport. An old-fashioned recipe for real time. ACM Transactions on Programming Lan-
guages and Systems, 16(5):1543–1571, 1994.

[8] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

[9] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[10] N. A. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg. Hybrid I/O automata. In Hybrid
Systems III, LNCS 1066, pages 496–510. Springer-Verlag, 1996.

[11] D. Del Vecchio and E. Klavins. Observation of hybrid guarded command programs. In 42nd
IEEE Conference on Decision and Control, Maui, HI, December 2003.

13

40

1

1UNIVERSITY
OF MINNESOTA
UNIVERSITY
OF MINNESOTA

SEC Fighter/UAV Capstone Demonstration
Caltech/Colorado Team

Experiment Scenario

Technologies Highlighted
Reliable wingman trajectory generation:
• online model based optimization (RHC-receding horizon
control) are used to provide the UAV with aggressive
maneuvering capabilities and the ability to work as a
reliable wingman
Verified reliable wingman protocol:
• safe Fighter/UAV formation operations is ensured through
the use of a verified reliable wingman protocol

Warfighting Benefits and MOEs
Online Control Customization
• UAV autonomous maneuvering capabilities enabled
• reliable wingman provides ready access to UAV assets
by Fighter/airborne FAC
• increased survivability & enhanced mission
accomplishment
High Confidence Software Systems
• reduced verification & validation (V&V) costs
• guaranteed reliable, safe autonomous operations
MOE: precise, responsive single ship and formation
maneuvering without direct human control

Scenario Timeline
• Fighter and UAV enter area near one another
• upon area entry, UAV requests rejoin & joins up
• Fighter maneuvers within agreed flight envelope
_ with UAV flying in extended trail formation
• state information data link is severed
• UAV detects lost data link---initiates lost wingman
• Fighter acknowledges lost wingman
• UAV establishes approximate parallel trajectory
• UAV detects restored data link---requests rejoin
• Fighter grants permission to rejoin
• UAV rejoins & resumes formation flight maneuvering

data link lost

data link reacquired

lost wingman acknowledged

rejoin approved

nominal operation

rejoin complete
resume formation flight

2UNIVERSITY
OF MINNESOTA
UNIVERSITY
OF MINNESOTA

Test Flight Planning

• Presentation of experiments to visitors on the ground during sorties
– Live narration speaking to real-time displays on the Experiment Controller

Display augmented with PowerPoint
– Items to cover in presentation

» Critical test points
» Technology highlighted at various times in experiment
» Warfighting benefits illustrated at various times in experiments

– Template of PowerPoint presentation from Boeing to TDs out Tuesday 18 May
2004

– Presentations and Narration scripts drafts due back by Friday 21 May 2004
Narration Leveraging

Experiment Control
Real-Time Display

Augmented with
PowerPoint
- Slow periods
- Illustrative graphics
describing technology

41

Richard Murray
Text Box
Appendix D

